Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583383

RESUMO

Greenhouse gases (GHGs) emissions due to increasing energy demand have raised the need to identify effective solutions to produce clean and renewable energy. Biotechnologies are an effective platform to attain green transition objectives, especially when synergically integrated to promote health and environmental protection. In this context, microalgae-based biotechnologies are considered among the most effective tools for treating gaseous effluents and simultaneously capturing carbon sources for further biomass valorisation. The production of biodiesel is regarded as a promising avenue for harnessing value from residual algal biomass. Nonetheless, the existing techniques for extracting lipids still face certain limitations, primarily centred around the cost-effectiveness of the process.This study is dedicated to developing and optimising an innovative and cost-efficient technique for extracting lipids from algal biomass produced during gaseous emissions treatment based on algal-bacterial biotechnology. This integrated treatment technology combines a bio-scrubber for degrading gaseous contaminants and a photobioreactor for capturing the produced CO2 within valuable algal biomass. The cultivated biomass is then processed with the process newly designed to extract lipids simultaneously transesterificated in fatty acid methyl esters (FAME) via In Situ Transesterification (IST) with a Kumagawa-type extractor. The results of this study demonstrated the potential application of the optimised method to overcome the gap to green transition. Energy production was obtained from residuals produced during the necessary treatment of gaseous emissions. Using hexane-methanol (v/v = 19:1) mixture in the presence KOH in Kumagawa extractor lipids were extracted with extraction yield higher than 12% and converted in fatty acid methyl esters. The process showed the enhanced extraction of lipids converted in bio-sourced fuels with circular economy approach, broadening the applicability of biotechnologies as sustainable tools for energy source diversification.


Assuntos
Lipídeos , Microalgas , Biocombustíveis , Promoção da Saúde , Ácidos Graxos , Gases , Biomassa , Ésteres
2.
Water Res ; 254: 121367, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417268

RESUMO

Differential absorption spectroscopy (DAS) quantifies changes in the UV-Visible absorbance of dissolved organic matter (DOM) caused by reactions of its chromophores. As a result of its precision and sensitvity, DAS serves as a powerful tool for characterizing the formation of disinfection by-products (DBPs) in generated in DOM chlorination reactions. However, the nonlinear relationship between the intensity of DAS and DBP concentrations as well as the need to develop site-specific fitting parameters limit its practical applications. This study investigated the physico-chemical nature of DAS of chlorinated DOM through experimental measurements and theoretical calculations. Results of this study provide molecular-level evidence that electrophilic substitution reactions involving DOM reactive sites result in the emergence of DAS feaures ascribed to the "fast" chromophores. The ring opening in the cyclic enones-like structures which can be present either in the original DOM or are generated as intermediates in its chlorination, leads to the emergence of DAS features associated with the "slow" chromophores and high yields of DBPs. The kinetic study of chlorination of real waters reveals a strong linear relationship (R2 > 0.91) between ln([DBP]) and the long-wavelength (λ > 325 nm) parameter of the DAS, notably (ln(-DA350)). This relationship varies among different water sources due to the differences in the heterogeneity of Band A3 whose maximum is near 350 nm. Band A3 is one of the Gaussian bands that comprise the overall UV-Visible spectrum of DOM. A new function (f(-DA350)) is proposed in this study to quantify DBP formation. This function, which is determined by the Band A3's area, allows establishing a universal linear relationship between f(-DA350) and ln([THMs]), as well as f(-DA350) and ln([HAAs]), across various water sources. The findings of this study will stimulate further development of spectroscopy-based DBP monitoring technology for monitoring and optimization of water disinfection processes.


Assuntos
Purificação da Água , Purificação da Água/métodos , Desinfecção , Aminas , Água/química
3.
Sci Total Environ ; 893: 164689, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315597

RESUMO

Hydrogen sulphide (H2S) removal from biogas is of high relevance as it damages combustion engines used for heat and power generation and causes adverse public health and environmental effects. Biological processes have been reported as a cost-effective and promising approach to desulfurize biogas. This review presents a detailed description of the biochemical foundations of the metabolic apparatus of H2S oxidizing bacteria, namely chemolithoautotrophs and anoxygenic photoautotrophs. The review focuses on the current and future applications of biological processes for biogas desulfurization and provides insights into their mechanism and main factors influencing their performance. The advantages, drawbacks, limitations, and technical improvements of the biotechnological applications currently based on chemolithoautotrophic organisms are covered extensively. Recent advances, sustainability and economical aspects of biological biogas desulfurization are also discussed. Anoxygenic photoautotrophic-bacteria-based photobioreactors were herein identified as useful tools to improve the sustainability and safety of biological biogas desulfurization. The review addresses gaps in the existing studies concerning the selection of the most suitable desulfurization techniques, their benefits and consequences. The research is useful for all stakeholders involved in the management and optimization of biogas and its findings are directly applicable in the development of new sustainable technologies for biogas upgrading processes on waste treatment plants.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Reatores Biológicos , Sulfetos , Biotecnologia , Fotobiorreatores
4.
Sci Total Environ ; 886: 163965, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156389

RESUMO

This study delves into the microbial community complexity and its role in self-forming dynamic membrane (SFDM) systems, designed to remove nutrients and pollutants from wastewater, by means of the analysis of Next-Generation Sequencing (NGS) data. In these systems, microorganisms are naturally incorporated into the SFDM layer, which acts as a biological and physical filter. The microorganisms present in an innovative and highly efficient aerobic, electrochemically enhanced, encapsulated SFDM bioreactor were studied to elucidate the nature of the dominant microbial communities present in sludge and in encapsulated SFDM, patented as living membrane® (LM) of the experimental setup. The results were compared to those obtained from the microbial communities found in similar experimental reactors without an applied electric field. The data gathered from the NGS microbiome profiling showed that the microbial consortia found in the experimental systems are comprised of archaeal, bacterial, and fungal communities. However, the distribution of the microbial communities found in e-LMBR and LMBR had significant differences. The results showed that the presence of an intermittently applied electric field in e-LMBR promotes the growth of some types of microorganisms (mainly electroactive microorganisms) responsible for the highly efficient treatment of the wastewater and for the mitigation of the membrane fouling found for those bioreactors.


Assuntos
Microbiota , Purificação da Água , Águas Residuárias , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Membranas Artificiais
5.
J Hazard Mater ; 445: 130522, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055954

RESUMO

The XANES/EXAFS data and quantum chemical simulations presented in this study demonstrate several features of the chemistry of arsenic compounds found in the condensates and solids generated in landfill gas (LFG) processing carried out for renewable natural gas (RNG) production. The XANES data show the decrease in the position of the absorption edge of As atoms, similar to that characteristic for sulfur-containing As solutes and solids. The EXAFS data show that the As-O and As-S distances in these matrixes are similar to those in thioarsenates. Quantum-chemical calculations demonstrated the close agreement between the experimental and modeled As-S and As-O distances determined for a range of methylated and thiolated arsenic solutes. These calculations also showed that the increase of the number of the As-S bonds in the coordination shell of arsenic is accompanied by a consistent decrease of the charges of As atoms. This decrease is correlated with the number of the As-S bonds, in agreement with the trend observed in the XANES data. These results provide insight into the intrinsic chemistry and reactivity of As species present in LFG matrixes; they may be helpful for the development of treatment methods to control arsenic in these systems.

6.
Water Res ; 232: 119702, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758356

RESUMO

Electrochemical oxidation (EO) is an attractive option for treatment of dissolved organic matter (DOM) in landfill leachate but concerns remain over the energy efficiency and formation of oxidation byproducts ClO3- and ClO4-. In this study, EO treatment of landfill leachates was carried out using representative active and nonactive anode materials, cell configurations and current densities. Size exclusion chromatograms coupled with 2D synchronous and asynchronous correlation analysis showed that the sensitivity of DOM fractions to EO degradation was dependent on the anode material. The nonactive boron-doped diamond (BDD) anode demonstrated the best performance for DOM oxidation. The humic acid-like fraction (HA, 2.5-20 kDa) predominated the visible absorbance of landfill leachates at λ ≥400 nm, and it generally had the highest reaction rates except the occurrence of the pH-induced denaturation and precipitation of the proteinaceous biopolymer fraction (BP, >20 kDa). During the EO treatment of landfill leachate with BDD anode, the UV absorbance spectra of landfill leachates at wavelengths <400 nm were affected by the formation of free chlorine. Instead, the decrease of Abs420 was found to be a good indicator of the shift of the oxidation from predominantly HA fraction to the proteinaceous BP fraction. The behavior of the Abs420 parameter was also indicative of the transition from the energy-efficient oxidation of DOM to the dominance of side reactions of chlorine evolution and the subsequent formation of ClO3- and ClO4-. These findings suggest that the EO treatment of landfill leachate can be optimized by adjusting the current density with feedback signals from the online monitoring of Abs420, to achieve a trade-off between degradation of DOM and control of ClO3- and ClO4-.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Cloro/análise , Oxirredução , Análise Espectral
7.
Sci Total Environ ; 858(Pt 1): 159800, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309261

RESUMO

Antibiotics are ubiquitous in wastewater and surface water and their presence is of grave concern. Chlorination, an important disinfection process used in wastewater treatment plants and waterworks, causes antibiotics to be degraded. However, interactions of antibiotics with chlorine result in the generation of multiple transformation products (TPs). TPs may be more toxic than the parent compounds, but their structures, yields and ecotoxicity remain to be ascertained in most cases. This study examined the degradation by chlorine of two typical macrolide (MLs) antibiotics, erythromycin (ERY) and roxithromycin (ROX), and identified the TPs formed as a result of ERY and ROX chlorination. The ecotoxicity of ERY, ROX and their TPs was evaluated using a combination of bioassay and ECOSAR prediction. The degradation of ERY and ROX followed pseudo-first-order kinetic at the molar ratio of FAC to MLs of 10:1, and the degradation kinetic rate depends on pH values. Six TPs of ERY including three chlorinated TPs, and six TPs of ROX including two chlorinated TPs were identified. The tertiary N of the desosamine moiety of ERY and ROX was determined to be the main reactive site. Demethylation and chlorine substitution at the reactive site are the main degradation pathways of ERY and ROX. ECOSAR results showed that the chlorinated byproducts of ERY TP578, TP542 and TP528, and the reduced hydroxylation products of ROX TP851 exhibited higher ecotoxicity than their parent compounds. However, algae growth inhibition assays indicated that the overall ecotoxicity of the chlorinated ERY or ROX mixture was lower than that of ERY or ROX prior to chlorination. This may be attributed to the removal of the parent compound and lower yields of toxic substances. While the yields of the toxic TPs may be low, their accumulation and combined effects of the TPs and other co-occurring pollutants should be examined further.


Assuntos
Roxitromicina , Poluentes Químicos da Água , Purificação da Água , Halogenação , Cloro , Cinética , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/toxicidade , Eritromicina
8.
Environ Sci Technol ; 56(24): 17743-17752, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36456897

RESUMO

Tetrabromobisphenol S (TBBPS) is a brominated flame retardant and a contaminant of emerging concern. Several studies found that sulfate radical (SO4•-) oxidation is effective to degrade TBBPS. Here, we demonstrate that the presence of nitrite (NO2-) at environmentally relevant levels causes dramatic changes in the kinetics and pathways of TBBPS degradation by SO4•-. Initially, NO2- suppresses the reaction by competing with TBBPS for SO4•-. At the same time, SO4•- oxidizes NO2- to form nitrogen dioxide radicals (NO2•), which actively react with some key TBBPS degradation intermediates, thus greatly altering the transformation pathway. As a result, 2,6-dibromo-4-nitrophenol (DBNP) becomes the primary TBBPS product. As TBBPS undergoes degradation, the released bromide (Br-) is oxidized by SO4•- to form bromine radicals and free bromine. These reactive bromine species immediately combine with NO2• or NO2- to form nitryl bromide (BrNO2) that in turn attacks the parent TBBPS, resulting in its accelerated degradation and increased formation of toxic nitrophenolic byproducts. These results show that nitryl halides (e.g., BrNO2 or ClNO2) are likely formed yet inadequately recognized when SO4•- is applied to remediate halogenated pollutants in the subsurface environment where NO2- is ubiquitously found. These insights further underscore the potential risks of the application of SO4•- oxidation for the remediation of halogenated compounds in realistic environmental conditions.


Assuntos
Nitritos , Poluentes Químicos da Água , Brometos , Bromo , Dióxido de Nitrogênio , Oxirredução
9.
Chemosphere ; 307(Pt 2): 135664, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35850228

RESUMO

This study compared effects of conventional ozonation and electrochemical oxidation (EO) on the formation of aldehydes and aliphatic carboxylic acids produced via the oxidation of natural organic matter (NOM) present in a low-mineralized surface water with a relatively low NOM concentration. Conventional ozonation and EO were effective in degrading the aromatic moiety of NOM characterized by the absorbance at 254 nm. Yields of aliphatic carboxylic acids in the ozone treated water were dominated by formate, acetate and oxalate, while no acetate was observed in the case of EO treatment. The speciation of aldehydes was similar in the case of ozonation and EO treatment, but the aldehydes yields were notably higher for ozonation. The presence of the elevated carbonate concentration moderated the changes in disinfection by-products (DBPs) concentration in the EO treated water due to the interception of ∙OH by HCO3-, while it did not affect ozonation treatment. This study allows gaining more insights into the nature of processes characteristic and optimization of disinfections based on ozonation and EO methods.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Aldeídos/química , Ácidos Carboxílicos , Desinfecção/métodos , Formiatos , Oxalatos , Ozônio/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
10.
Environ Sci Technol ; 56(12): 7935-7944, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549166

RESUMO

Recent studies found that both nitrite (NO2-) and ammonium (NH4+) lead to nitrophenolic byproducts in SO4•- oxidation processes, during which NO2• generated through the oxidation of the inorganic nitrogen by SO4•- is the key nitrating agent. This study demonstrates that the formation of phenoxy radicals to which NO2• can be incorporated immediately is another governing factor. Two types of sites having distinct reactivities in natural organic matter (NOM) molecules can be transformed to phenoxy radicals upon SO4•- oxidation. Fast sites associated with phenolic functionalities are primarily targeted in the reaction sequence involving NO2-, because both are preferentially oxidized. Following the depletion of NO2-, NH4+ becomes the main precursor of NO2• that interacts with slow sites associated with the carboxylic functionalities. Experimental data show that the formation of total organic nitrogen in 24 h reached 6.28 µM during SO4•- oxidation of NOM (4.96 mg/L organic carbon) in the presence of both NO2- (0.1 mM) and NH4+ (1.0 mM), while the sum of those formed in the presence of each alone was only 3.52 µM. Results of this study provide further insights into the mechanisms of nitrated byproduct formation when SO4•- is applied for environmental remediation.


Assuntos
Compostos de Amônio , Nitritos , Nitratos , Nitrogênio , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Compostos Orgânicos , Oxirredução , Sulfatos
11.
Chemosphere ; 301: 134728, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487356

RESUMO

A hierarchically ordered macroporous RuO2 electrode (HOM-RuO2) was fabricated to enhance in situ active chlorine production in an electrochemical system intended for treatment of pharmaceutical active compounds (PhACs). The unique structure of HOM-RuO2 resulted in a decrease of the chlorine evolution potential, a large electro-active area available for in situ conversion of Cl- to active chlorine, and hence improved the active chlorine production by 40%. 5-Fluorouracil (5-FU) was used as a target pollutant to explore the performance of the HOM-RuO2 for PhACs degradation based on the in situ generated active chlorine. The results showed that the reaction rate of active-chlorine-mediated oxidation of 5-FU produced using the HOM-RuO2 was 18.4 times higher than that in the case of hydroxyl radicals (OH)-initiated oxidation using a PbO2 electrode at 30 mA cm-2. The effects of current density and initial solution pH on the 5-FU removal were investigated. The mechanism of 5-FU degradation was proposed taking into accounts both active chlorine production, and change of the speciation of 5-FU caused by pH variations. The dominant degradation products observed for the degradation of 5-FU using the HOM-RuO2 were lactic acid, propanol, acetic acid, urea and other small molecules, but no chlorinated products were detected. These study demonstrates the promise of the HOM-RuO2-based electrochemical systems for the active-chlorine-mediated treatment of recalcitrant pharmaceuticals found in wastewater.


Assuntos
Cloro , Poluentes Químicos da Água , Cloretos , Cloro/química , Eletrodos , Fluoruracila , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/análise
12.
Water Res ; 213: 118093, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149364

RESUMO

Methylated arsenic species are ubiquitous in the environment and resistant to removal by conventional treatment technologies. This study addressed this challenge based on the examination of the removal of dimethylarsinic acid (DMA) in a system that combines zerovalent iron (ZVI) and powdered activated carbon (PAC). The removal of DMA in the ZVI/PAC system was compared to that by coagulation, adsorption, electrochemical and Fenton oxidations, and other conventional methods. While only the electrochemical oxidation using a PbO2/Sb-SnO2/Ti anode allowed removing up to 60% DMA at several hours-long treatment times, the removal of DMA in the ZVI/PAC system containing 10 g/L ZVI and 2.5 g/L PAC with an initial pH of 2.0 was 95% for a 30 min reaction time. Specific roles of PAC, ZVI and its oxidation products in DMA removal were examined based on the spectroscopic data and quantum chemical modeling for the DMA/Fe(II) and DMA/Fe(III) systems. These methods demonstrated the formation of moderately strong DMA/Fe(II) and DMA/Fe(III) complexation. These results and relevant kinetic data were interpreted to indicate that the removal of DMA is governed by the rapid generation of Fe2+ ions released as a result of accelerated ZVI corrosion in the galvanic ZVI/PAC microcells and ensuing formation of DMA/ Fe2+ complexes that are readily adsorbed by PAC.

13.
Case Stud Chem Environ Eng ; 6: 100238, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37520925

RESUMO

Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.

14.
Water Res ; 202: 117379, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246001

RESUMO

The binding between dissolved organic matter (DOM) and micro-pollutants (MPs) results in significant impacts on their migration, transformation and degradation. However, the role of the DOM/MP binding on their oxidative transformation remains poorly studied. The binding of MPs by DOM, in combination with DOM's roles as a photosensitizer and/or a competitor for free radicals, needs to be considered in the context of understanding the DOM's impacts on the oxidative degradation of MPs. This study aims to explore this aspect of DOM/MP interactions based on the quantitation of humic acid (HA) and tetracycline (TET) complexation and its role in TET removal. This study also compared the degradation of free TET versus that bound in HA-TET complexes in different oxidation processes. Fourier transform infrared (FTIR) data show that the carboxyl and phenolic hydroxyl groups in HA are the main binding sites of TET, while nuclear magnetic resonance (NMR) analysis shows the binding of TET engages its -N(CH3)2 groups, and two-dimensional correlation spectroscopy (2D-COS) data show that the carboxyl groups in DOM are sensitive than phenolic groups in the binding of TET. The difference between the degradation rates (Δkobs) of the free and bound TET decreased with the increase of ionic strength using sodium nitrate, but increased with the introduction of Ca2+ and Mg2+ due to the formation of TET-Ca2+/Mg2+ complexes. Quenching experiments showed that the free radicals (•OH and •SO4-), PMS oxidant and UV light were the main contributors to the TET degradation in UV/PS, UV/PMS and UV/H2O2 processes, respectively. In-situ fluorescence time scanning and differential absorbance spectra showed that free TET was preferentially oxidized over the bound TET in all the tested treatments except UV/PS. These results provide new insights into the role of DOM/MP complexation in the degradation of MPs in natural and engineered systems.


Assuntos
Antibacterianos , Substâncias Húmicas , Sítios de Ligação , Substâncias Húmicas/análise , Peróxido de Hidrogênio , Tetraciclina
15.
J Hazard Mater ; 415: 125580, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33735767

RESUMO

Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.


Assuntos
COVID-19 , Desinfecção , Humanos , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Água
16.
Chemosphere ; 276: 130043, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33706178

RESUMO

In this study, the model compound esculetin that has functional groups typical for natural organic matter (NOM) was used to ascertain the nature of the characteristic bands in the differential UV-visible absorbance spectra (DAS) associated with the formation of metal-NOM complexes. The binding of ten different metal ions (Cu(II), Ni(II), Co(II), Fe(III), Cr(III), Al(III), Zn(II), Ca(II), Mg(II) and Pb(II)) with esculetin generate four bands in the DAS. These bands are similar to those present in the DAS of metal-NOM complexes. The UV-visible absorbance spectra of the metal-esculetin systems were calculated using time-dependent density functional theory (TD-DFT). The TD-DFT results demonstrate that the prominent features of the DAS of esculetin are primarily associated with the electron transitions between the molecular orbitals near the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the metal-esculetin complex. Charge decomposition analysis (CDA) results demonstrated that these electron transitions originate from the esculetin fragment to the Zn(II) fragment in the complex. Covalent indexes [(χm)2rc] of the metal ions were found to be correlated with the metal-specific features of the DAS of metal-esculetin systems. The strength of the linear correlations between the quantitative parameters of the electron density of the bond critical points (BCP) is indicative of the strength of the metal-esculetin interactions.


Assuntos
Complexos de Coordenação , Elétrons , Compostos Férricos , Metais , Teoria Quântica , Umbeliferonas
17.
Chemosphere ; 268: 129241, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33359836

RESUMO

Concentrations of several toxic disinfection by-products (DBP), notably haloacetonitriles (e.g., trichloroacetonitrile, TCAN) and haloketones (e.g., di- and trichloropropanone, DCPN and TCPN, respectively) are affected by chlorination conditions and the inherent instability of these DBPs. In this study, effects of temperature, chlorine dose and reaction time on the formation of TCAN, DCPN and TCPN were interpreted using the approach of differential absorbance spectroscopy. Experimental data obtained for a wide range of water quality conditions demonstrate that in some cases the concentrations of some of the unstable DBPs increased rather than decreased at low temperatures and realistically long contact times. Despite the presence of pronounced changes of the kinetics of generation and degradation of these DBPs at varying temperatures and chlorine doses, their concentrations were strongly correlated with the concurrent changes of spectroscopic properties of DOM quantified via differential absorbance measurements at 272 nm (ΔA272). The maximum values of TCAN, DCPN and TCPN concentrations observed for the chlorination of eight different surface waters occur at the relative decreases of absorbance at 272 nm (defined as RΔA272) values of ca. 0.32 (±0.03), 0.24 (±0.05), and 0.42 (±0.03), respectively. The activation energies of degradation reactions of unstable DBPs were examined and the results indicate that TCAN and TCPN are caused by their hydrolysis with OH- while the degradation of DCPN is mainly caused by halogenation reaction with HOCl. These results in this study may be important for controlling the formation of unstable DBPs and further optimization of drinking water treatment.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Halogenação , Halogênios , Análise Espectral , Poluentes Químicos da Água/análise
18.
Chemosphere ; 261: 128189, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113651

RESUMO

This study compared effects of pH, ionic strength and complexation with Mg2+ on the chromophores and fluorophores of aquatic and terrestrial NOM exemplified by the standard isolates Suwannee River fulvic and humic acid (SRFA and SRHA) and Pahokee Peat fulvic and humic acids (PPFA and PPHA) provided by the International Humic Substance Society (IHSS). The intensity of the differential spectra of the NOM isolates increased monotonically with pH. These spectra comprised contributions of similar chromophore systems associated with the carboxylic and phenolic moieties. The intensity of SRFA and PPFA fluorescence changed non-monotonically vs. pH indicating that the deprotonation of the phenolic fluorophores decreased their emission yields. Examination of the effects of pH on the slopes of the log-transformed absorbance of NOM showed that the influence of deprotonation on the conformations of PPFA and PPHA molecules was less prominent than those for SRFA but not dissimilar to those of SRHA. Changes of the differential spectra and spectral slopes showed that Mg2+/PPFA and Mg2+/PPHA complexation was more effected by electrostatic interactions while the involvement of phenolic groups was notable for SRFA. The observed trends highlight similarities and differences in the properties of the chromophores and fluorophores in the standard isolates of soil and aquatic NOM. These results necessitate further systematic comparison of the properties of NOM isolates and those of unaltered NOM.


Assuntos
Benzopiranos/análise , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Solo/química , Benzopiranos/química , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Magnésio/análise , Concentração Osmolar , Rios/química , Espectrometria de Fluorescência/métodos
19.
Water Res ; 185: 116206, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736281

RESUMO

This study compared chlorination-induced changes of the properties of natural organic matter (NOM) represented by standard humic substances and NOM present in pristine and anthropogenically-affect reservoirs, rivers, groundwater and seawater. The chlorination-induced changes of NOM properties were quantified using the differential absorbance spectra (DAS) which were processed via numeric deconvolution. Six Gaussian bands were found to comprise the DAS of all examined waters. These bands (denoted as A0, A1, A2, A3, A4 and A5, respectively) have maxima located at ca. 200, 240, 276, 316, 385 and 547 nm. The bands A1-A4 were observed in the DAS of representative model chlorinated compounds. Quantum chemical (QC) calculations were carried out to examine the intrinsic nature of these bands and electronic transitions associated with them. QC data demonstrate that bands A1 and A2 are present in almost all aromatic organic species, A3 is likely to be associated with acetophenone- and/or styrene-like groups. A4 can be attributed to the engagement of m-hydroxyaromatic and flavone-type groups typical for the polyphenolic moiety in NOM and known to be the key precursors of disinfection by-product (DBP) formation. Thus, the intensity of band A4 is predicted to be an especially strong predictor of DBP formation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Substâncias Húmicas/análise , Rios , Poluentes Químicos da Água/análise
20.
Water Res ; 184: 116151, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682080

RESUMO

This study examined effects of aquatic and soil natural organic matter (NOM) exemplified by standard Suwannee River fulvic acid (SRFA) and Pahokee Peat fulvic acid (PPFA), respectively, on the electrochemical (EC) reactivity and mass transfer properties of the cationic organic probe toluidine blue (TB) that forms complexes with NOM. EC measurements that were carried out using the method of rotating ring-disc electrode (RRDE) showed that for disc potentials below -0.4 V vs. the standard Ag/AgCl reference electrode, TB molecules undergo EC reduction accompanied by the formation of EC-active products that undergo oxidation at the ring electrode. EC reactions of TB in the range of potentials -0.2 to -0.4 V were determined to involve free TB+ cations and TB species adsorbed on the electrode surface. The EC reduction of TB species at the disc potentials < -0.4 V was controlled by the mass transfer of the free TB+ cations and TB/NOM complexes to the electrode surface. Formation of TB/NOM complexes caused the mass transfer-controlled TB currents to undergo a consistent decrease. The observed changes were correlated with the extent of TB/NOM complexation and decreases of the diffusion coefficients of TB/NOM complexes that have higher molecular weights (MW) than the free cations. Properties of the intermediates formed upon the reduction of TB+ cations were also affected by NOM. These results demonstrate that RRDE measurements of EC reactions of TB or possibly other EC active probes allow probing the complexation of EC-active organic species with NOM and mass transfer properties of NOM complexes and ultimately NOM itself.


Assuntos
Benzopiranos , Cloreto de Tolônio , Cátions , Eletrodos , Substâncias Húmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...